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Project X Contents

* Brief description of the current RDR injection
configuration

e Alternate injection Configuration (long pulse)

— Main Injector
* Advanced stripping techniques
* Plans for FY 12
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Project X

Current RDR Injection Configuration

e Currentinjection into the Recycler for accumulation
followed by immediate injection into the Ml

e Carbon foil Stripping
* Linac Beam Structure
— 1 mA 4.3 ms 6 injections (~¥26 mA-ms)

— Bunch spacing 6.2 ns (162.5 Mhz)

— Broadband chopper for abort gap and elimination of bunches
which fall on MI RF separatrix.

— Bunch length ~ 20 ps (rms) needs to be verified for new lattice
— Pulsed linac rep rate 10 Hz
— Pulsed linac final energy 8 GeV kinetic +/- 10 MeV

* Transverse and longitudinal phase space painting
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Project X

Recycler Injection Straight Section
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e Linac: emittance(95%) 2.5t dpop +/-2 MeV Bunch length 20 mm ( 26 ps rms)

* Injected beam 3 =40 m for this exercise with 3¢ =4mm
with 3 adjustable to 10m ->3c =2mm
* Recycler ring lattice Bx=70m By =30m 3ox=17.2 3cy=10.7
* Recycler rev. period 11.13 us (h=588) beam pulse 10.34 us (546 53 Mhz bunches/turn)

Injection beam power 34 kW per injection (2.6E13/injection x 6 = 1.54E14)
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Project X

Recycler Injection
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Profect X yrrent RDR Configuration(3)

 Longitudinal phase space painting in both phase (fit into central 12 ns of ring RF
bucket) and energy considered
* Ring RF frequency options (new 53 Mhz cavities from Nova)
*Current 53 Mhz (not harmonic) parasitic phase shift during injection process
*New cavities with harmonic (3) of 162.5 Mhz (54.166 Mhz)
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Longitudinal painting block has been implemented in ORBIT by Leonid Vorobiev so that
simulations may be carried out in six-dimensional phase space.
Results are in general agreement with ESME 1D simulation
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Project X Issues to address

 More detailed painting simulations
— Transverse (ORBIT / STRUCT)
* Painting algorithms
* Foil interactions
* Realistic magnetic fields
* Space charge
* Wideband impedence

— Longitudinal (ESME / ORBIT)
* Space charge
* Wideband impendence
* New bunch structure
* Both phase and energy painting
* Foil Issues
— Temperature
— Losses

* Electron collection

 Dynamic aperture studies (preliminary report show space charge not an issue
during injection.... But need to verify with new bunch parameters

* Ring collimation (for injection losses) — the need to be addressed in with ORBIT
and STRUCT.
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Project X

Alternate Injection Configuration

* There is a desire to be able to inject directly into the
Ml to eliminate the Recycler as an accumulator
— This requires a single injection from the linac to keep the
Ml cycle time small for the Neutrino Program

* Due to the small linac beam current -> long injection time (~ 26
ms) -> called long pulse option

— Current Ml injection energy 8 GeV, lowering it to 6 GeV
thought to save SS by shortening pulsed linac

— Numerous alternate injection points into the MI have been
suggested (M160 and MI162) although none have been
deemed workable (at least up to now)

— Best injection point still MI-10 (at least up to now)
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Project X
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Project X

Potential Modification to MI-10
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Project X pqvanced Stripping Techniques

e Various techniques have been suggested as a means of
overcoming foil temperature limitations
— Liquid Li jet - being developed at ANL

— Gas jet M.Popovic, C.Ankenbrandt, R.P. Johnson,
— Rotating foils ”CW SRF H- Linac as a Proton Driver for Muon Colliders
— Multiple foils and Neutrino Factories”,

. . . 155 (2
— Resonant foil bypass Proc. Workshop on Applications of HIPA, p.155 (2009)

— Laser assisted stripping - Being developed at SNS
* Although all the above have the potential of surviving
long pulse operation, only the last technique removes
the physical mass from the interaction hence
“eliminates” interaction with circulating beam
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Rotating Diamond Foil Assembly for H- Stripping

2 micron UNCD film
(surface structure may be required

? Si substrate

Copper
_ A
42 mm
34 mm 5mm
H- beam
T=30ms The Si substrate and UNCD film are
® = 2,000 rpm

sandwiched between two copper disks
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Project X

Temperature Reduction of Rotating Foil
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::: Injection for stationary and rotating foil based
-2 Upon hit density from STRUCT. (Igor Rakhno)

Increasing diameter of foil to ~ 3” should reduce
Preliminary model of Rotating foil and Temp by ~ factor 2.

hit density using STRUCT (Sasha Drozhdin)
*Plot from Fermilab-FN-0899-APC August 2011
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Ultrananocrystalline diamond Applications
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Nanocarbon Synthesis Facilities
at
Center for Nanoscale Materials
Argonne National Laboratory

Scientific Contact: Dr. Anirudha Sumant
Access through user proposal
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Large Area Graphene Synthesis at CNM

Scientific Contact: Dr. Anirudha Sumant (sumant@anl.gov)

Graphene growth on multiple 4”

) i Remote RF-Plasma assisted growth/in-situ
wafers in a single run

functionalization

Large area graphene growth using Atomate’s
Thermal/PECVD tool installed in the CNM "
clean room — 2D

Unique features:

» Wafer scale( 100 mm) synthesis of

B 20000 - single and few layer graphene .
-
= i .s . .
S 1| 1@manspectra of single layer * Ability to functionalize graphene
= graphene grown on Ni P
b & surface
>
"% 10000 i i .
& * in- situ using remote RF-plasma
E G source.
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] D . . .
¢ Ability to synthesize graphene usin
i A } ytosy grap g
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Single layer graphene grown on 4” . .
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Atomate’s Large Area Carbon Nanotube CVD System
Scientific contact: Dr. Anirudha Sumant (sumant@anl.gov)

Unique Features:

Large area synthesis of CNT on multiple 100 mm diameter wafers
in a single deposition run.

- PAtomate *Synthesis using thermal CVD including RF-plasma CVD for in-situ
plasma processing and functionalization of CNT.

*Gas delivery module with 8-channel MFC and expandable up to
12 channels.

*Automatic process control with adaptive control mode.

*Fully enclosed, clean room compatible system with safety interlocks

Atomate’s large area CNT synthesis tool ) ) )
in the CNM clean room and equipped with hazardous gas sensor monitors.

Horizontally aligned growth of CNT
on quartz substrate

. Random growth of CNT
on SiO,/Si substrate

cV ‘SpotMagn - Det WD |————oH 20 gm

A
Argonne




Diamond Thin Film Synthesis Capability at CNM

Scientific contact: Dr. Anirudha V. Sumant ( sumant@anl.gov)

Large area 915 MHz Microwave Plasma Chemical
Vapor Deposition System (MPCVD) system Unique Features:

* 915 MHz, 15 KW microwave plasma reactor

* Synthesis of diamond films on 200 mm and
150 mm diameter silicon wafers with excellent thickness
uniformity

* Ability to synthesize nitrogen doped diamond films

* Fully automated recipe driven operation

* Coupled with Optical emission spectroscopy (OES) for
in-situ growth species diagnostic studies

0974972007 e Located inside the clean room
NEXAFS spectra of the UNCD film
7]

SEMof UNCD
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|

C K-edge

280 280 300 30 320
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Total Electron Yield (arb. Unit

18.00 TLD

Ultrananocrystalline diamond (UNCD) film Unmatched thickness
on 8” and 6” diameter silicon wafers and phase uniformity




Project X | aser Assisted Stripping

* Being pioneered and developed at SNS in

— Proof of principal experiment validated theoretical estimates (
stripped only a single 400 MHz bunch)

— the advancement of theoretical predictions

— the advancement of laser technology and accelerator and laser
techniques to reduce required laser power

— An intermediate experiment planned to demonstrate >90% efficiency
in 1 us long pulse

* Stripping requirements for several beam scenarios in Project X
have been estimated by Timofey Gorlov (SNS)

 FNAL is keenly interested in the successful results of the SNS
intermediate stripping experiment

10/26/2011 WG3 (dej) 19



Profect X gycitation Efficiency

* Peak power levels of the Laser stripping process
using the standard 3 step process in the absence
of a magnetic field.
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Project X

Laser Power Estimates for 8 GeV laser Assisted Stripping

Required Laser Parameters for 98% stripping Efficiency *Timofey Gorlov (SNS)
Wavelength inm] | 1500 | 1064|1900 | 1064 | 1500 | 1064
elliptical circular Strong Field
Incidence angle [deg] 49.8 94.6 49.8 94.6 49.8 94.6
Peak Power, PO [MW] 1.1 5 1.1 5.5 2.1 10
Micropulse energy [mJ] 0.08 0.3 0.08 04 0.14 0.7
Power at 325 Mhz [kW] 26 100 26 130 47 230
Power at 162.5 Mhz [kW] 13 50 13 65 24 115
Micropulse duration (rms) [ps] 29 28 29 28 27 28
X-rms size [mm)] 4.3 5.0 2.1 2 2 2
Y-rms size [mm] 1.9 1.9 2.1 2 2 2
X'-divergence [mr] 1.4 0.6 1.7 .8 0 0
Y’-divergence [mr] 0.9 0.6 1.7 8 0 0



Cre(est & Laser System Requirements

 Many technical issues
— Wavefront distortion (mirror deformation) important for build-up cavity
— Dielectric coating behavior in vacuum (more problematic for SNS)
— Efficient harmonic conversion (in the case of SNS)
— Radiation damage to optics and optical coatings
— Acceptable spatial profile (M2~1) gaussian or top hat

— Reliability 27/7 365 days with maintaince
— High peak powers 1to 10 MW

— Large pulse energies 80 w to 700 wJ

— High average powers 10 to 100 kW

— Long macro-pulse length 1 to 26 ms

— High repetition rates 10 Hzto .7 Hz

 Many techniques such as
— Build up cavities
— Fiber amplification
— Laser re-circulation
— Cryogenic amplification
*  Work being carried out
— at private companies under SBIR program
— National Labs (LBL and SNS and soon FNAL)
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Project X Snake Creek Lasers

* Pioneering work in cooling solid-state laser crystals to
cryogenic temperatures.
— Very significant power scaling
— Reduced thermal aberration
 Awarded Phase | SBIR for “High Average Power (HAP)
Cryogenic Laser for Laser Stripping Applications”
— Generate scaled up HAP Design for 1029 nm Yb:YAG Cryogenic Laser
— Experimentally verify Yb:YAG Cryogenic Laser Scaling
— Generate Detailed Design for HAP Ho:YAG Laser} ~ 9 micron
— Generate Detailed Design for HAP OPO System

 FNAL Continues to work with Snake Creek in the development
of a potential system that can be utilized for laser stripping
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Project X Injection Plans for FY12 (1)

* Further optimize RDR configuration
— Transverse and longitudinal painting
— 3D magnet end field design and tracking

* Rotating Foil R&D
— Continue tracking efforts to better estimate hit densities

— Initiate collaboration with Center for Nanoscale Materials (at
ANL) for the design of a UNCD foil and ultimate prototype

— Start ANSYS model for thermal and stress analysis based
upon UNCD properties at elevated temperatures provided by
CNM

— Begin to think about implementation (vacuum chamber and
rotation mechanism

10/26/2011 WGS3 (dej) 24



Project X Injection Plans for FY12 (2)

* Laser stripping

— Continue to work with Snake Creek lasers in their
effort to develop and cryogenic laser amplifier
suitable for laser stripping at FNAL (or SNS)

— Collaborate with SNS on their intermediate laser
stripping experiment

— Continue to refine FNAL conceptual system
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* Thank You

e Questions ?
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